Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 5 de 5
Фильтр
1.
Viruses ; 15(4)2023 03 31.
Статья в английский | MEDLINE | ID: covidwho-2305997

Реферат

The current study was initiated when our specific-pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1 and FCoV2) demonstrated an amino acid sequence identity of 11.5% and a similarity of 31.8% with FCoV1 RBD (12.2% identity and 36.5% similarity for FCoV2 RBD). The sera from toms and queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins, but not with FCoV2 RBD. Thus, the queens and toms were infected with FCoV1. Additionally, the plasma from six FCoV2-inoculated cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. Hence, the sera from both FCoV1-infected cats and FCoV2-infected cats developed cross-reactive antibodies to SCoV2 RBD. Furthermore, eight group-housed laboratory cats had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60-400-fold lower dose blocked the in vitro FCoV2 infection, demonstrating their close structural conformations essential as vaccine immunogens. Remarkably, such cross-reactivity was also detected by the peripheral blood mononuclear cells of FCoV1-infected cats. The broad cross-reactivity between human and feline RBDs provides essential insights into developing a pan-CoV vaccine.


Тема - темы
COVID-19 , Coronavirus, Feline , Cats , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Leukocytes, Mononuclear/metabolism , Serogroup , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
2.
J Antibiot (Tokyo) ; 2023 Apr 25.
Статья в английский | MEDLINE | ID: covidwho-2305007

Реферат

COVID-19, caused by SARS-CoV-2 infection, is currently among the most important public health concerns worldwide. Although several effective vaccines have been developed, there is an urgent clinical need for effective pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical derivative of avermectin produced by Streptomyces avermitilis, is a macrocyclic lactone with antiparasitic activity. Recent studies have shown that ivermectin inhibits SARS-CoV-2 replication in vitro. In the present study, we investigated the in vivo effects of ivermectin in a hamster model of SARS-CoV-2 infection. The results of the present study demonstrate oral administration of ivermectin prior to SARS-CoV-2 infection in hamsters was associated with decreased weight loss and pulmonary inflammation. In addition, the administration of ivermectin reduced pulmonary viral titers and mRNA expression level of pro-inflammatory cytokines associated with severe COVID-19 disease. The administration of ivermectin rapidly induced the production of virus-specific neutralizing antibodies in the late stage of viral infection. Zinc concentrations leading to immune quiescence were also significantly higher in the lungs of ivermectin-treated hamsters compared to controls. These results indicate that ivermectin may have efficacy in reducing the development and severity of COVID-19 by affecting host immunity in a hamster model of SARS-CoV-2 infection.

3.
Nature ; 609(7928): 754-760, 2022 09.
Статья в английский | MEDLINE | ID: covidwho-1984401

Реферат

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Тема - темы
COVID-19 , GTPase-Activating Proteins , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors , Host Microbial Interactions , SARS-CoV-2 , Alleles , Animals , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Japan , Lung/pathology , Macrophages , Mesocricetus , Middle Aged , Pneumonia/complications , Pyrazoles/pharmacology , RNA-Seq , SARS-CoV-2/pathogenicity , Viral Load , Weight Loss
4.
Viruses ; 12(5)2020 05 24.
Статья в английский | MEDLINE | ID: covidwho-1726014

Реферат

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 µM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 µM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


Тема - темы
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Hydroxychloroquine/pharmacology , Interferon Type I/pharmacology , Analysis of Variance , Animals , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cats , Cell Line/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus, Feline/pathogenicity , Drug Combinations , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Fluorescent Antibody Technique/veterinary , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/toxicity , Interferon Type I/therapeutic use , Interferon Type I/toxicity , Virulence
5.
PLoS Pathog ; 17(10): e1009542, 2021 10.
Статья в английский | MEDLINE | ID: covidwho-1468184

Реферат

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.


Тема - темы
Antibodies, Viral/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 , Single-Domain Antibodies/administration & dosage , Virus Attachment/drug effects , Administration, Intranasal , Animals , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
Критерии поиска